907 research outputs found

    Fully Parallel Stochastic LDPC Decoders

    Full text link

    Deformation and failure of the ice bridge on the Wilkins Ice Shelf, Antarctica

    Get PDF
    A narrow bridge of floating ice that connected the Wilkins Ice Shelf, Antarctica, to two confining islands eventually collapsed in early April 2009. In the month preceding the collapse, we observed deformation of the ice bridge by means of satellite imagery and from an in situ GPS station. TerraSAR-X images (acquired in stripmap mode) were used to compile a time series. The ice bridge bent most strongly in its narrowest part (westerly), while the northern end (near Charcot Island) shifted in a northeasterly direction. In the south, the ice bridge experienced compressive strain parallel to its long axis. GPS position data were acquired a little south of the narrowest part of the ice bridge from 19 January 2009. Analysis of these data showed both cyclic and monotonic components of motion. Meteorological data and re-analysis of the output of weather-prediction models indicated that easterly winds were responsible for the cyclic motion component. In particular, wind stress on the rough ice melange that occupied the area to the east exerted significant pressure on the ice bridge. The collapse of the ice bridge began with crack formation in the southern section parallel to the long axis of the ice bridge and led to shattering of the southern part. Ultimately, the narrowest part, only 900 m wide, ruptured. The formation of many small icebergs released energy of >125 Ă— 106 J

    Geometry, Scaling and Universality in the Mass Distributions in Heavy Ion Collisions

    Full text link
    Various features of the mass yields in heavy ion collisions are studied. The mass yields are discussed in terms of iterative one dimensional discrete maps. These maps are shown to produce orbits for a monomer or for a nucleus which generate the mass yields and the distribution of cluster sizes. Simple Malthusian dynamics and non-linear Verhulst dynamics are used to illustrate the approach. Nuclear cobwebbing, attractors of the dynamics, and Lyapanov exponents are discussed for the mass distribution. The self-similar property of the Malthusian orbit offers a new variable for the study of scale invariance using power moments of the mass distribution. Correlation lengths, exponents and dimensions associated with scaling relations are developed. Fourier transforms of the mass distribution are used to obtain power spectra which are investigated for a 1/fβ1/f^{\beta} behavior.Comment: 29 pages in REVTEX, 9 figures (available from the authors), RU-92-0

    Biopolymer additives for the reduction of soil erosion losses during irrigation

    Get PDF
    High molecular weight, synthetic polyacrylamides (PAM) are relatively large, water soluble polymers that are used increasingly by farmers to prevent erosion and increase infiltration during irrigation. A lab-scale erosion test was conducted to screen biopolymer solutions for a similar efficacy in reducing shear-induced erosion. In lab-scale mini-furrow tests, chitosan, starch xanthate, cellulose xanthate, and acid-hydrolyzed cellulose microfibrils, at concentrations of 20, 80, 80, and 120 ppm respectively, reduced suspended solids in the runoff water from test soil. None of these biopolymers, however, exhibited the >90% runoff sediment reduction shown by PAM at concentrations as low as 5 ppm. Preliminary field tests results showed that chitosan solutions were only marginally effective in reducing runoff from a 137m long furrow. There were indications that results were dependent on the length of the furrow. Erosion of some clay-rich soils from Northern California was reduced up to 85% by increasing the concentration of exchangeable calcium to >2.5mMole, with or without the addition of polymer additives

    Comments on Noncommutative Sigma Models

    Get PDF
    We review the derivation of a noncommutative version of the nonlinear sigma model on \CPn and it's soliton solutions for finite θ\theta emphasizing the similarities it bears to the GMS scalar field theory. It is also shown that unlike the scalar theory, some care needs to be taken in defining the topological charge of BPS solitons of the theory due to nonvanishing surface terms in the energy functional. Finally it is shown that, like its commutative analogue, the noncommutative \CPn-model also exhibits a non-BPS sector. Unlike the commutative case however, there are some surprises in the noncommutative case that merit further study.Comment: 22 pages, 4 figures, LaTeX (JHEP3), Minor changes, Discussion expanded and references adde

    Two-Step Model of Fusion for Synthesis of Superheavy Elements

    Get PDF
    A new model is proposed for fusion mechanisms of massive nuclear systems where so-called fusion hindrance exists. The model describes two-body collision processes in an approaching phase and shape evolutions of an amalgamated system into the compound nucleus formation. It is applied to 48^{48}Ca-induced reactions and is found to reproduce the experimental fusion cross sections extremely well, without any free parameter. Combined with the statistical decay theory, residue cross sections for the superheavy elements can be readily calculated. Examples are given.Comment: 4 pages, 4 figure

    Colored Group Field Theory

    Full text link
    Group field theories are higher dimensional generalizations of matrix models. Their Feynman graphs are fat and in addition to vertices, edges and faces, they also contain higher dimensional cells, called bubbles. In this paper, we propose a new, fermionic Group Field Theory, posessing a color symmetry, and take the first steps in a systematic study of the topological properties of its graphs. Unlike its bosonic counterpart, the bubbles of the Feynman graphs of this theory are well defined and readily identified. We prove that this graphs are combinatorial cellular complexes. We define and study the cellular homology of this graphs. Furthermore we define a homotopy transformation appropriate to this graphs. Finally, the amplitude of the Feynman graphs is shown to be related to the fundamental group of the cellular complex

    Hadronic Ď„\tau decay, the renormalization group, analiticity of the polarization operators and QCD parameters

    Full text link
    The ALEPH data on hadronic tau-decay is throughly analysed in the framework of QCD. The perturbative calculations are performed in 1-4-loop approximation. The analytical properties of the polarization operators are used in the whole complex q^2 plane. It is shown that the QCD prediction for R_{tau} agrees with the measured value R_{tau} not only for conventional Lambda^{conv}_3 = (618+-29) MeV but as well as for Lambda^{new}_3 = (1666+-7) MeV. The polarization operator calculated using the renormgroup has nonphysical cut [-Lambda^2_3, 0]. If Lambda_3 = Lambda^{conv}_3, the contribution of only physical cut is deficient in the explanation of the ALEPH experiment. If Lambda_3 = Lambda^{new}_3 the contribution of nonphysical cut is very small and only the physical cut explains the ALEPH experiment. The new sum rules which follow only from analytical properties of polarization operators are obtained. Basing on the sum rules obtained, it is shown that there is an essential disagreement between QCD perturbation theory and the tau-lepton hadronic decay experiment at conventional value Lambda_3. In the evolution upwards to larger energies the matching of r(q^2) (Eq.(12)) at the masses J/psi, Upsilon and 2m_t was performed. The obtained value alpha_s(-m^2_z) = 0.141+-0.004 (at Lambda_3 = Lambda^{new}_3) differs essentially from conventional value, but the calculation of the values R(s) = sigma(e+e- -> hadrons)/sigma(e+e- -> mu+mu-), R_l = Gamma(Z -> hadrons)/Gamma(Z -> leptons), alpha_s(-3 GeV^2), alpha_s(-2.5 GeV^2) does not contradict the experiments.Comment: 20 page

    The Rolling Tachyon as a Matrix Model

    Full text link
    We express all correlation functions in timelike boundary Liouville theory as unitary matrix integrals and develop efficient techniques to evaluate these integrals. We compute large classes of correlation functions explicitly, including an infinite number of terms in the boundary state of the rolling tachyon. The matrix integrals arising here also determine the correlation functions of gauge invariant operators in two dimensional Yang-Mills theory, suggesting an equivalence between the rolling tachyon and QCD_2.Comment: 22pages. 3 figures. v2: added reference, fixed minor typo
    • …
    corecore